Mathematica code:
Rot80 =
Table[
Table[
RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],
{v, 1, 8, 1}],
{a, 0, 2 Pi, Pi/80}]
Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}
CubeTrail[h_, op_, N_, s_, r_, z_, t_, PR_, IS_, C_] :=
Graphics[
Table[
Scale[
Translate[
{AbsoluteThickness[h], Opacity[op],
If[C == 1, Black, White],
Line[
Table[
{Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[1]],
Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[2]]},
{e, 1, 16, 1}]]},
r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],
z^n, r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],
{k, 1, N, 1},
{n, 1, s, 1}],
PlotRange -> PR, ImageSize -> 500,
Background -> If[C == 0, Black, White]]
Manipulate[P = {h, op, N, s, r, z, t, PR, IS, C};
CubeTrail[h, op, N, s, r, z, t, PR, 500, 0],
{{h, 1}, 0, 20}, {op, 1, 0},
{{N, 4}, 1, 16, 1}, {s, 1, 100, 1},
{{r, 3.5}, 0, 10}, {z, 1, 0},
{{PR, 5}, 1, 5}, {C, 0, 1, 1},
{t, 0, 100, 1}]
P ={1.5, 1, 4, 8, 3.8, 0.75, 0, 5, 500, 0}
Manipulate[
CubeTrail[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],t,P[[8]],500,0],
{t, 1, 80, 1}]